首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13894篇
  免费   1392篇
  国内免费   940篇
电工技术   375篇
综合类   1356篇
化学工业   1731篇
金属工艺   951篇
机械仪表   1082篇
建筑科学   3217篇
矿业工程   805篇
能源动力   500篇
轻工业   285篇
水利工程   390篇
石油天然气   302篇
武器工业   537篇
无线电   680篇
一般工业技术   2783篇
冶金工业   342篇
原子能技术   182篇
自动化技术   708篇
  2024年   27篇
  2023年   218篇
  2022年   383篇
  2021年   471篇
  2020年   488篇
  2019年   439篇
  2018年   440篇
  2017年   540篇
  2016年   537篇
  2015年   525篇
  2014年   820篇
  2013年   838篇
  2012年   1002篇
  2011年   1144篇
  2010年   867篇
  2009年   865篇
  2008年   810篇
  2007年   917篇
  2006年   802篇
  2005年   669篇
  2004年   534篇
  2003年   466篇
  2002年   408篇
  2001年   350篇
  2000年   275篇
  1999年   215篇
  1998年   217篇
  1997年   169篇
  1996年   158篇
  1995年   124篇
  1994年   112篇
  1993年   73篇
  1992年   53篇
  1991年   44篇
  1990年   57篇
  1989年   27篇
  1988年   21篇
  1987年   14篇
  1986年   11篇
  1985年   12篇
  1984年   12篇
  1983年   7篇
  1982年   9篇
  1981年   6篇
  1980年   14篇
  1979年   3篇
  1964年   4篇
  1963年   3篇
  1959年   3篇
  1956年   3篇
排序方式: 共有10000条查询结果,搜索用时 484 毫秒
1.
《Ceramics International》2022,48(8):10601-10612
Using MgC2O4, Mg powders as raw materials and Ni(NO3)2?6H2O as a catalyst, CNTs/MgO composite powders were prepared by a catalytic combustion synthesis method. The CNTs/MgO composite powders were characterized by XRD, Raman spectroscopy, FESEM/EDS and HRTEM. The effects of catalyst content on the degree of graphitization and aspect ratio of the CNTs in composite powders were investigated. Moreover, the thermal shock resistance of low-carbon Al2O3–C refractories after adding the composite powder was investigated. The results indicated that the CNTs prepared with 1 wt% Ni(NO3)2?6H2O addition had a higher degree of graphitization and aspect ratio. In particular, the aspect ratio could reach approximately 200. The growth mechanism of hollow bamboo-like CNTs in the composite powders was proven to be a V-L-S mechanism. The thermal shock resistance of Al2O3–C samples could be improved significantly after adding CNTs/MgO composite powders. In particular, compared with CM0, the residual strength ratio of Al2O3–C samples with added 2.5 wt% composite powders could be increased 63.9%.  相似文献   
2.
Many database applications currently deal with objects in a metric space. Examples of such objects include unstructured multimedia objects and points of interest (POIs) in a road network. The M-tree is a dynamic index structure that facilitates an efficient search for objects in a metric space. Studies have been conducted on the bulk loading of large datasets in an M-tree. However, because previous algorithms involve excessive distance computations and disk accesses, they perform poorly in terms of their index construction and search capability. This study proposes two efficient M-tree bulk loading algorithms. Our algorithms minimize the number of distance computations and disk accesses using FastMap and a space-filling curve, thereby significantly improving the index construction and search performance. Our second algorithm is an extension of the first, and it incorporates a partitioning clustering technique and flexible node architecture to further improve the search performance. Through the use of various synthetic and real-world datasets, the experimental results demonstrated that our algorithms improved the index construction performance by up to three orders of magnitude and the search performance by up to 20.3 times over the previous algorithm.  相似文献   
3.
Dynamic responses of the geosynthetic-encased stone column (GESC) supported embankment under traffic loads have become a hot topic. This study investigates the responses of GESC improved ground under vertical cyclic loading. A series of laboratory tests in a designed model test tank have been carried out with different loading parameters (varied loading amplitudes and frequencies), different column dimensions (varied encasement lengths and column diameters). In the tests, the soil-column stress distribution, accumulated settlement of loading plate, excess pore water pressure in the surrounding soil and lateral bulging of the stone column are monitored. Experimental results indicate that the vertical stress on the stone column increases with the increment of encasement length, and decreases with the increment of column diameter, loading amplitude and loading frequency. The increasing stress on the surrounding soil leads to a greater accumulated settlement of the loading plate and excess pore water pressure, while the increasing stress on the column leads to larger lateral bulging of the column. Excess pore water pressure dissipates effectively through vertical and horizontal drainage channels provided by the stone column and the sand bed. The geosynthetic encasement prevents the clay from obstructing the drainage channel by filtration and guarantees the drainage effect.  相似文献   
4.
《Ceramics International》2020,46(15):24213-24224
We report an experimental approach, designed based on the recent findings that domain switching in ferroelectric ceramics can be separated into three regimes during antiparallel electric field loading, to investigate the influence of domain switching process on the electrical fatigue behavior of ferroelectrics. Uniaxial compressive stress (−2 MPã -100 MPa) and thermal loading (20 °C–150 °C) were used to tune the domain switching process. Under the same loading condition, the bipolar electrical fatigue behavior of soft lead zirconate titanate ceramics was systematically characterized. The amplitude and frequency of the applied electric field are 2 kV/mm and 10 Hz, respectively. By analyzing the evolution of the domain switching process, combined with the measured polarization and strain response, as well as the cracks observed on the surface of the specimen, it is found that the fatigue of ferroelectric ceramics was mainly related to the domain switching process near the coercive electric field: the regime 2 defined in this paper. The underlying mechanism was further discussed by considering the interplay between the domain switching process with the main factors affecting the electrical fatigue of ferroelectrics, namely defect redistribution, charge carrier injection, and crack initiation.  相似文献   
5.
Porous alumina with a highly textured microstructure was fabricated by pulse electric current sintering (PECS) using alumina platelets. Highly oriented porous alumina with a porosity of 3%–50% was obtained by a pressure-controlled method of PECS. The properties of the highly textured porous alumina were measured in two directions. The nitrogen gas permeance and thermal conductivity at room temperature were higher in the direction along the platelet length due to the higher continuity of pores and the connectivity of alumina platelets, respectively. The anisotropy of the thermal conductivity at room temperature was investigated and explained by the effect of grain size of platelets as well as morphology and orientation of pores. The bending strength was higher with the loading direction along the platelet thickness. The thermal shock strength was clearly different in the two directions. The difference in the thermal shock strength was investigated by the measurement of properties and thermal stress analysis.  相似文献   
6.
The effects of La2O3–Al2O3–SiO2 addition on the thermal conductivity, coefficient of thermal expansion (CTE), Young's modulus and cyclic thermal shock resistance of hot-pressed h-BN composite ceramics were investigated. The samples were heated to 1000 °C and then quenched to room temperature with 1–50 cycles, and the residual flexural strength was used to evaluate cyclic thermal shock resistance. h-BN composite ceramics containing 10 vol% La2O3–Al2O3 and 20 vol% SiO2 addition exhibited the highest flexural strength, thermal conductivity and relatively low CTE, which were beneficial to the excellent thermal shock resistance. In addition, the viscous amorphous phase of ternary La2O3–Al2O3–SiO2 system could accommodate and relax thermal stress contributing to the high thermal shock resistance. Therefore, the residual flexural strength still maintained the value of 234.3 MPa (86.9% of initial strength) after 50 cycles of thermal shock.  相似文献   
7.
This study investigates the seismic performance of geosynthetic-reinforced modular block retaining walls backfilled with cohesive, fine grained clay-sand soil mixture. Shaking table tests were performed for three ½ scaled (wall height 190 cm) and ¼ scaled model walls to investigate the effects of backfill type, the influence of reinforcement length and reinforcement stiffness effects. The El Centro and Kobe earthquake records of varying amplitudes were used as base acceleration. Displacement of the front wall, accelerations at different locations, strains on the reinforcements, and the visual observations of the facing and the backfill surface were used to evaluate the seismic performance of model walls. The model walls were subjected to rigorous shaking and the walls did not exhibit any stability problems or signs of impending failure. The maximum deformations observed on the models with cohesive backfill was less than half of the deformation of the sand model. The load transfers between the geogrid and cohesive soil was comparable to that of sand and hence the needed reinforcement length was similar as well. As a result; the model walls with cohesive backfills performed within acceptable limits under seismic loading conditions when compared with granular backfilled counterparts.  相似文献   
8.
以管道机器人(Pipeline inspection gauge,PIG)为载体的内检测技术是保障油气管道安全运输的重要手段。针对管内高压流体作用下,管道机器人在冲击管内环焊缝过程中产生的动力学行为突变问题。建立了管道周向受限空间中基于Kelvin弹簧阻尼的管道机器人密封盘等效动力学模型,结合管道机器人本体建立了多体系管道机器人动力学模型;详细推导了管道机器人轴向振动微分方程,以及管内流体的流动方程;并使用Matlab/Simulink与Adams进行流固耦合仿真,作为重要的工艺参数之一,研究了管道机器人速度改变时,其在冲击环焊缝过程中的动力学响应情况。结果表明:所建立的密封盘及管道机器人动力学模型能够很好地表征密封盘在管道轴向、径向以及周向的力学特性;运行速度越快,管道机器人通过环焊缝引起的轴向振动越剧烈,冲击振动越明显;而垂向和俯仰振动现象随运动速度增大而显著减弱。  相似文献   
9.
Abstract

The performance of electrical discharge machining (EDM) primarily depends on the spark quality generated in the inter-electrode gap (IEG) between the tool and workpiece. A method for obtaining accurate information about the spark gap is required to effectively monitor the EDM process. The rise and fall of thermal energy in the discharge zone at a rapid rate during the dielectric breakdown produces high-pressure shock waves. This work explores the suitability of using acoustic emission (AE) generated from these shock waves and the elastic AE waves released on the workpiece due to the induced stress to monitor the performance and spark gap in EDM. The information content of the AE signals acquired at various machining conditions was extracted using AE RMS, spectral energy and peak amplitude. These features were able to well discriminate the machining condition, tool material, workpiece material, flushing pressure, current density, the initial surface roughness of the tool. Additionally, the AE signal features had a good and consistent correlation with the performance parameters, including material removal rate, surface roughness (Ra and Rq) and tool wear. The findings lay the groundwork to develop an effective, non-intrusive in-situ AE-monitoring system for performance and IEG condition in EDM.  相似文献   
10.
液压马达作为液压系统的执行元件在工程机械上广泛应用,针对液压马达加载工况下的输出特性,利用Simulink和AMESim软件对系统进行联合仿真建模,并对系统的运行状态、控制性能、回收性能进行研究,对液压马达加载系统的设计和改进具有重要的参考意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号